Operations \& Algebraic Thinking

Grade 2

Represent and solve problems involving addition and subtraction.
CCSS.MATH.CONTENT.2.OA.A. 1
Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. ${ }^{1}$

Add and subtract within 20.
CCSS.MATH.CONTENT.2.OA.B. 2
Fluently add and subtract within 20 using mental strategies. ${ }^{2}$ By end of Grade 2, know from memory all sums of two one-digit numbers.
Work with equal groups of objects to gain foundations for multiplication.
CCSS.MATH.CONTENT.2.OA.C. 3
Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.

CCSS.MATH.CONTENT.2.OA.C. 4
Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

Grade 3

Represent and solve problems involving multiplication and division.
CCSS.MATH.CONTENT.3.OA.A. 1
Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.

CCSS.MATH.CONTENT.3.OA.A. 2
Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.

CCSS.MATH.CONTENT.3.OA.A. 3

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. ${ }^{1}$
CCSS.MATH.CONTENT.3.OA.A. 4
Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5={ }_{-} \div 3,6 \times 6=$?

Understand properties of multiplication and the relationship between multiplication and division.
CCSS.MATH.CONTENT.3.OA.B. 5
Apply properties of operations as strategies to multiply and divide. ${ }^{2}$ Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)$ $=40+16=56$. (Distributive property.)

CCSS.MATH.CONTENT.3.OA.B. 6
Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8.

Multiply and divide within 100 .
cCSS.math.CONTENT.3.OA.C. 7
Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers.

Solve problems involving the four operations, and identify and explain patterns in arithmetic.
CCSS.MATH.CONTENT.3.OA.D. 8
Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. ${ }^{3}$ CCSS.MATH.CONTENT.3.OA.D. 9
Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.

Grade 4

Use the four operations with whole numbers to solve problems.
CCSS.MATH.CONTENT.4.OA.A. 1
Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is times as many as 7 and times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.

CCSS.MATH.CONTENT.4.OA.A. 2
Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. ${ }^{1}$

CCSS.MATH.CONTENT.4.OA.A. 3
Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding

Gain familiarity with factors and multiples.
CCSS.MATH.CONTENT.4.OA.B. 4
Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors.
Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.

Generate and analyze patterns.
CCSS.MATH.CONTENT.4.OA.C. 5
Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.

