Number \& Operations in Base Ten

Grade 2

Understand place value.

CCSS.MATH.CONTENT.2.NBT.A. 1

Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:

CCSS.MATH.CONTENT.2.NBT.A.1.A
100 can be thought of as a bundle of ten tens - called a "hundred."
CCSS.MATH.CONTENT.2.NBT.A.1.B
The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).

CCSS.MATH.CONTENT.2.NBT.A. 2
Count within 1000 ; skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s .
CCSS.MATH.CONTENT.2.NBT.A. 3
Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
CCSS.MATH.CONTENT.2.NBT.A. 4
Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using $>,=$, and $<$ symbols to record the results of comparisons.

Use place value understanding and properties of operations to add and subtract.
CCSS.MATH.CONTENT.2.NBT.B. 5
Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.

CCSS.MATH.CONTENT.2.NBT.B. 6
Add up to four two-digit numbers using strategies based on place value and properties of operations.

Add and subtract within 1000 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting threedigit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.

CCSS.MATH.CONTENT.2.NBT.B. 8
Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.
CCSS.MATH.CONTENT.2.NBT.B. 9
Explain why addition and subtraction strategies work, using place value and the properties of operations. ${ }^{1}$

Grade 3

Use place value understanding and properties of operations to perform multi-digit arithmetic. ${ }^{1}$
CCSS.MATH.CONTENT.3.NBT.A. 1
Use place value understanding to round whole numbers to the nearest 10 or 100 .
CCSS.MATH.CONTENT.3.NBT.A. 2
Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

CCSS.MATH.CONTENT.3.NBT.A. 3
Multiply one-digit whole numbers by multiples of 10 in the range $10-90$ (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations.

Grade 4

Generalize place value understanding for multi-digit whole numbers.

CCSS.MATH.CONTENT.4.NBT.A. 1

Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.

CCSS.MATH.CONTENT.4.NBT.A. 2

Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>,=$, and $<$ symbols to record the results of comparisons.

CCSS.MATH.CONTENT.4.NBT.A. 3

Use place value understanding to round multi-digit whole numbers to any place.
Use place value understanding and properties of operations to perform multi-digit arithmetic.
CCSS.MATH.CONTENT.4.NBT.B. 4
Fluently add and subtract multi-digit whole numbers using the standard algorithm.
CCSS.MATH.CONTENT.4.NBT.B. 5
Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

CCSS.MATH.CONTENT.4.NBT.B. 6

Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

